Regularized Partial Matching of Rigid Shapes
نویسندگان
چکیده
Matching of rigid shapes is an important problem in numerous applications across the boundary of computer vision, pattern recognition and computer graphics communities. A particularly challenging setting of this problem is partial matching, where the two shapes are dissimilar in general, but have significant similar parts. In this paper, we show a rigorous approach allowing to find matching parts of rigid shapes with controllable size and regularity. The regularity term we use is similar to the spirit of the Mumford-Shah functional, extended to non-Euclidean spaces. Numerical experiments show that the regularized partial matching produces better results compared to the non-regularized one.
منابع مشابه
Partial matching of rigid shapes
Matching of rigid shapes is an important problem in numerous applications across the boundary of computer vision, pattern recognition and computer graphics communities. A particularly challenging setting of this problem is partial matching, where the two shapes are dissimilar in general, but have significant similar parts. In this paper, we show an approach allowing to find matching parts of ri...
متن کاملPartial shape matching without point-wise corre- spondence
Partial similarity of shapes in a challenging problem arising in many important applications in computer vision, shape analysis, and graphics, e.g. when one has to deal with partial information and acquisition artifacts. The problem is especially hard when the underlying shapes are non-rigid and are given up to a deformation. Partial matching is usually approached by computing local descriptors...
متن کاملA Correspondence-Less Approach to Matching of Deformable Shapes
Finding a match between partially available deformable shapes is a challenging problem with numerous applications. The problem is usually approached by computing local descriptors on a pair of shapes and then establishing a point-wise correspondence between the two. In this paper, we introduce an alternative correspondence-less approach to matching fragments to an entire shape undergoing a non-...
متن کاملContext shapes: Efficient complementary shape matching for protein-protein docking.
We describe an efficient method for partial complementary shape matching for use in rigid protein-protein docking. The local shape features of a protein are represented using boolean data structures called Context Shapes. The relative orientations of the receptor and ligand surfaces are searched using precalculated lookup tables. Energetic quantities are derived from shape complementarity and b...
متن کاملHierarchical Matching of Non-rigid Shapes
Detecting similarity between non-rigid shapes is one of the fundamental problems in computer vision. While rigid alignment can be parameterized using a small number of unknowns representing rotations, reflections and translations, non-rigid alignment does not have this advantage. The majority of the methods addressing this problem boil down to a minimization of a distortion measure. The complex...
متن کامل